2016 國際數學競賽 台灣區初賽

2016 International Mathematics Contest (Taiwan)

高中二年級組 試卷

- ※ 請將答案寫在答案卷上
- 一、選擇題(每題10分)
- (A) 1. Calculate the exact value of $(379+379)\times500$?
 - (A) 379000
- (B) 397000
- (C) 558000
- (D) 548000

解析:379×2×500=379×1000=379000

- (A) 2. If $\sin \theta$ is one root to this equation $4x^2 + 4x 3 = 0$, find $\cos 2\theta$.

- (A) $\frac{1}{2}$ (B) $-\frac{1}{2}$ (C) $\frac{1}{3}$ (D) $-\frac{1}{3}$

翻譯: 若 $\sin \theta$ 為 $4x^2 + 4x - 3 = 0$ 之一根,則 $\cos 2\theta$ 之值為多少?

- 解析: $4x^2 + 4x 3 = 0 \Rightarrow (2x + 3)(2x 1) = 0 \Rightarrow x = \frac{-3}{2}$ 或 $x = \frac{1}{2}$
 - 取 $\sin \theta = \frac{1}{2}$,所求 $\cos 2\theta = 1 2\sin^2 \theta = 1 2(\frac{1}{2})^2 = \frac{1}{2}$
- (C) 3. When John goes out, he has the probability of not bringing his umbrella home averagely once per 5 outgoings. One day, John went to visit Mr. A,B,C by sequence. He found he forgot his umbrella again. What is the probability that the umbrella is at Mr. B's house?

- (A) $\frac{10}{61}$ (B) $\frac{15}{61}$ (C) $\frac{20}{61}$ (D) $\frac{25}{61}$

翻譯:約翰外出時,平均每五次有一次忘記帶回自己的雨傘的習慣,有一天約翰帶 著雨傘依 A、B、C 順序訪問此三家,回家後才發現忘記帶回雨傘,求雨傘 放在 B 家的機率?

解析: P(忘在 B | 忘)=
$$\frac{\frac{4}{5} \times \frac{1}{5}}{\frac{1}{5} + \frac{4}{5} \times \frac{1}{5} + \frac{4}{5} \times \frac{4}{5} \times \frac{1}{5}} = \frac{20}{25 + 20 + 16} = \frac{20}{61}$$

(B) 4. 試求 $\cos 65^{\circ} \sin 110^{\circ} + \cos 25^{\circ} \sin 20^{\circ} = ?$ (A) $\frac{1}{2}$ (B) $\frac{\sqrt{2}}{2}$ (C) $\frac{\sqrt{3}}{2}$ (D) 1

解析: 所求為cos65°sin(90°+20°)+cos(90°-65°)sin 20°

$$=\cos 65^{\circ}\cos 20^{\circ}+\sin 65^{\circ}\sin 20^{\circ}=\cos (65^{\circ}-20^{\circ})=\cos 45^{\circ}=\frac{\sqrt{2}}{2}$$

(D) 5. 設四邊形 ABCD 内接於一圓,如右圖。其中

$$\overline{AB} = \overline{BC} = 3$$
, $\overline{CD} = 5$, $\overline{DA} = 8$,求 \overline{BD} 之長。

- (A) 4 (B) 5 (C) 6
- (D) 7

解析: 設 $\angle A = \theta$,則 $\angle C = 180^{\circ} - \theta$ 。

故
$$\overline{BD}^2 = 3^2 + 8^2 - 2 \times 3 \times 8\cos\theta = 3^2 + 5^2 - 2 \times 3 \times 5\cos(180^\circ - \theta)$$

⇒
$$73-48\cos\theta=34+30\cos\theta$$
, $\varphi\cos\theta=\frac{1}{2}$,

於是
$$\overline{BD}^2 = 73 - 48 \times \frac{1}{2} = 49$$
,得 $\overline{BD} = 7$ 。

- (B) -1 (C) -2 (D) $-\sqrt{2}$

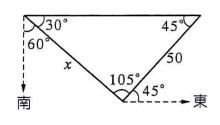
解析: $\cos(180^{\circ} - \theta) = -\cos\theta$

$$\cos 179^{\circ} = -\cos 1^{\circ}$$
, $\cos 178^{\circ} = -\cos 2^{\circ}$, ..., $\cos 91^{\circ} = -\cos 89^{\circ}$

得
$$\cos 1^\circ + \cos 2^\circ + \cdots + \cos 89^\circ + \cos 90^\circ - \cos 89^\circ - \cdots - \cos 2^\circ - \cos 1^\circ + \cos 180^\circ$$

$$=\cos 90^{\circ} + \cos 180^{\circ} = 0 - 1 = -1$$

- (D) 7. 某君在一廣場之某一點出發,先往東北方前進 50 公尺後,轉往正西方 向行進,一段時間後測得,原出發點位在他的南偏東60°方向;則此時 他距離出發點大約幾公尺?(參考數值: $\sqrt{2} = 1.414214$)
 - (A) 35


- (B) 43 (C) 50 (D) 71 公尺

解析:把題意畫成如右之圖,

由正弦定律知
$$\frac{x}{\sin 45^\circ} = \frac{50}{\sin 30^\circ}$$

$$\sqrt{2x} = 100$$
, $x = \frac{100}{\sqrt{2}} = 50\sqrt{2}$

$$x = 70.7$$
,二選 D

(B) 8. $\sin \theta + \cos \theta = \frac{1}{5}$,目 $\sin \theta > 0$,求 $\cos \theta =$?

(A)
$$-\frac{2}{5}$$

(B)
$$-\frac{3}{5}$$

(C)
$$-\frac{4}{5}$$

(A)
$$-\frac{2}{5}$$
 (B) $-\frac{3}{5}$ (C) $-\frac{4}{5}$ (D) $-\frac{1}{5}$

解析: ① $(\sin\theta + \cos\theta)^2 = \frac{1}{25} \Rightarrow 1 + 2\sin\theta \cdot \cos\theta = \frac{1}{25}$, $\therefore \sin\theta \cdot \cos\theta = -\frac{12}{25} \dots \dots$ ①

②:
$$\sin \theta > 0$$
 : $\cos \theta < 0$ $\nabla \sin \theta = \frac{1}{5} - \cos \theta$

代入①得
$$(\frac{1}{5}-\cos\theta)\cos\theta = -\frac{12}{25}$$
 ∴ $25\cos^2\theta - 5\cos\theta - 12 = 0$

$$25\cos^2\theta - 5\cos\theta - 12 = 0$$

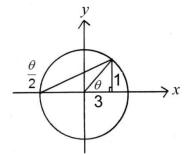
$$\therefore (5\cos\theta + 3)(5\cos\theta - 4) = 0 \qquad \therefore \cos\theta < 0 \qquad \therefore \cos\theta = -\frac{3}{5}$$

$$\therefore \cos\theta < 0$$

$$\therefore \cos \theta = -\frac{3}{5}$$

(B) 9. 已知 $\tan \theta = \frac{1}{3}$,求 $\tan \frac{\theta}{2} = ?$

(A)
$$\sqrt{10} + 3$$


(B)
$$\sqrt{10} - 3$$

(C)
$$\frac{1}{6}$$

(A)
$$\sqrt{10} + 3$$
 (B) $\sqrt{10} - 3$ (C) $\frac{1}{6}$ (D) $\sqrt{10} - 1$

解析: $r = \sqrt{3^2 + 1^2} = \sqrt{10}$

$$\tan\frac{\theta}{2} = \frac{1}{\sqrt{10} + 3} = \sqrt{10} - 3$$

(A) 10. 已知 12 個產品中有 4 個不良品,今逐個檢查,則檢查到第 5 個時,出 現第3個不良品之機率為?

(A)
$$\frac{14}{165}$$

(B)
$$\frac{13}{165}$$

(A)
$$\frac{14}{165}$$
 (B) $\frac{13}{165}$ (C) $\frac{12}{165}$ (D) $\frac{11}{165}$

(D)
$$\frac{11}{165}$$

解析:第5次為特殊物先作:又12個中有4不良⇒就有8良

前4次有2良,2不良,第5次才會有第3個不良

到底哪2次良?

..前4次選2次良,剩2次選2次不良,第5次這1次選1次不良

一(良) 二(良)
$$=(\pi)$$
 四(不) 五(不) $C_2^4 \times \frac{8}{12} \times \frac{7}{11} \times C_2^2 \times \frac{4}{10} \times \frac{3}{9} \times C_1^1 \times \frac{2}{8}$

$$= \frac{\cancel{7}\cancel{4}\cancel{1}}{\cancel{2}\cancel{1}\cancel{2}\cancel{1}} \times \frac{\cancel{8}}{\cancel{1}\cancel{2}} \times \frac{7}{\cancel{1}\cancel{1}} \times 1 \times \frac{\cancel{4}^{2}}{\cancel{1}\cancel{0}\cancel{1}} \times \frac{\cancel{8}}{\cancel{9}\cancel{1}} \times 1 \times \frac{\cancel{2}}{\cancel{8}} = \frac{14}{165}$$

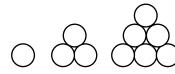
(D) 11. 方程式 $x^4 - 4x^3 - 3x^2 + x + 1 = 0$ 在下列哪兩個整數之間有實數根?

- (A) -3與-2之間 (B) -2與-1之間
- (C) -1與0之間 (D)0與1之間

解析: 令 $f(x) = x^4 - 4x^3 - 3x^2 + x + 1$

$$\Rightarrow f(0) = 1 \cdot f(1) = -4 \Rightarrow f(0)f(1) < 0$$

由勘根定理知 $\Rightarrow f(x) = 0$ 在 0 與 1 之間至少有一實根。 : 選 D


(D) 12. 滿足不等式(1.25)" > 10" 的最小正整數為 ? (log 2 = 0.3010)

- (A) 70 (B) 71 (C) 72 (D) 73

解析: $\log(\frac{5}{4})^n > \log 10^7 \Rightarrow n(\log 5 - \log 4) > 7 \Rightarrow n(1 - \log 2 - 2\log 2) > 7$

$$\Rightarrow n(1-3\times0.3010) > 7 \Rightarrow n\times0.097 > 7 \Rightarrow n > \frac{7}{0.097} = 72.1 \rightarrow 73$$

(A) 13. 三角堆垛,最上層 1 個,第二層 3 個,第三層 6 個,如下圖

】))... 依此類推,最後一堆 20 層,這 20 堆

- 總共有多少個 ? (A) 1540 (B) 1640 (C) 1560 (D) 1660

解析: ①第k 層有1+2+3+…+ $k = \frac{k(k+1)}{2}$ 個 ... 第 20 層有 210 個

②總和
$$s = \frac{1}{2} \sum_{k=1}^{20} k(k+1) = \frac{1}{2} [\sum_{k=1}^{20} k^2 + \sum_{k=1}^{20} k] = \frac{1}{2} [\frac{20 \times 21 \times 41}{6} + \frac{20 \times 21}{2}] = 1540$$

(B)14. 有渡船3艘,每艘船最多可载6個人,今有甲、乙、丙、丁、戊、己、 庚、辛共8個人欲渡河,則安全過渡的方法有幾種?

- (A) 6410 (B) 6510 (C) 6610 (D) 6710

解析:所求=任意搭的方法數-8人同船的方法數-7人同船的方法數

$$=3^{8}-3-8\cdot3!=6561-3-48=6510$$

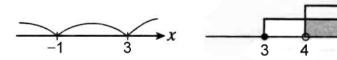
(\mathbb{C}) 15. 求 $(x-2)^8 \cdot (x+1)^5$ 展式中 x^{12} 項的係數為?

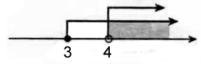
- (A) -9 (B) -10 (C) -11 (D) -12

解析: $(x-2)^8(x+1)^5$ 展開式中 x^{12} 項可由

① $(x-2)^8$ 展開式中 x^8 項與 $(x+1)^5$ 展開式中 x^4 項相乘,以及

② $(x-2)^8$ 展開式中 x^7 項與 $(x+1)^5$ 展開式中 x^5 項相乘而得,

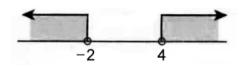

所以 $(x-2)^8(x+1)^5$ 展開式中 x^{12} 項為 $c_0^8x^8 \cdot c_1^5x^4 + c_1^8x^7(-2)^1 \cdot c_0^5x^5$

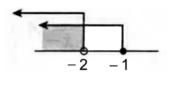

 $=(c_0^8c_1^5-2c_1^8c_0^5)x^{12}$,其係數為 $c_0^8c_1^5-2c_1^8c_0^5=5-16=-11$

(B) 16. 求 | x + 1 | + | x - 3 | > 6 的解?

- (A) -2 < x < 4 (B) x > 4 x < -2
- (C) -1 < x < 3
- (D) x > 3 或 x < -1

解析:


(2)當-1 < x < 3時,x + 1 > 0,x - 3 < 0


 $x + 1 - x + 3 > 6 \rightarrow 4 > 6$ 不合 ②

(3) 常 x < -1 時,x + 1 < 0,x - 3 < 0

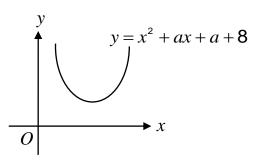
 $-x - 1 - x + 3 > 6 \rightarrow -2x + 4 \rightarrow x < -2 \cdots (3)$

由①②③得x > 4或x < -2為所求

(A) 17. 不論x 為任何實數値, $\frac{x^2 + ax + b}{3x^2 + 2x + 1}$ 之値恆k 為一定數,則a + b + k = ?

- (A) $\frac{4}{3}$ (B)1 (C) $\frac{5}{3}$ (D) 2

解析: $\frac{x^2 + ax + b}{3x^2 + 2x + 1} = k$ 恆成立 $\Rightarrow x^2 + ax + b = k(3x^2 + 2x + 1) = 3kx^2 + 2kx + k$


(C) 18. 對任意實數 x 值,二次函數 $f(x) = x^2 + ax + a$ 之值恆大於 -8 ,則實數 a的範圍為何?

(A)
$$-8 < a < 4$$

(C)
$$-4 < a < 8$$

(C)
$$-4 < a < 8$$
 (D) $a > 8 \vec{\otimes} a < -4$

解析: $f(x) = x^2 + ax + a > -8$, 對所有實數 x $\rightarrow y = x^2 + ax + a + 8 > 0$, 對所有實數 x則 $D=a^2-4(a+8)<0 \rightarrow a^2-4a-32<0$, $\rightarrow (a-8)(a+4) < 0$, ... -4 < a < 8

$$(A) - 200$$
 $(B) - 300$

$$(B) - 300$$

$$(C) - 400$$

$$(D) - 500$$

解析: 原式 $\rightarrow f(x) = x^7 - 230x^5 + 78x^4 - 46x^3 - 5x^2 + 270x + 50$

求 f(15) 即求 f(x) 除以 x-15 之餘式

(B) 20. $x \cdot y \cdot z$ 是正實數 $\sqrt{x} + \sqrt{y-1} + \sqrt{z-2} = \frac{1}{2}(x+y+z)$,求 $x \cdot y \cdot z = ?$

解析: $x \ge 0$, $y \ge 1$, $z \ge 2$, $2\sqrt{x} + 2\sqrt{y-1} + 2\sqrt{z-2} = x + y + z$

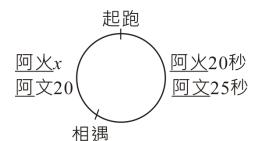
$$x-2\sqrt{x}+y-2\sqrt{y-1}+z-2\sqrt{z-2}=0$$

$$((\sqrt{x})^2 - 2(\sqrt{x}) + 1^2) + ((\sqrt{y-1})^2 - 2(\sqrt{y-1}) + 1^2) + ((\sqrt{z-2})^2 - 2(\sqrt{z-2}) + 1^2)$$

$$1^2$$
) = 0

$$(\sqrt{x}-1)^2 + (\sqrt{y-1}-1)^2 + (\sqrt{z-2}-1)^2 = 0$$

$$\sqrt{x}-1=0$$
, $\sqrt{y-1}-1=0$, $\sqrt{z-2}-1=0$, $\sqrt{x}=1$, $\sqrt{y-1}=1$


$$\sqrt{z-2} = 1$$
, $x = 1$, $y-1=1$, $z-2=1$, $y = 2$, $z = 3 \Rightarrow x \cdot y \cdot z = 1 \cdot 2 \cdot 3 = 6$

- (B) 21. 你參加賽跑,追過第 2 名,你是第幾名 ?
 - (A) 第1名
- (B) 第2名 (C) 第3名 (D) 第4名

解析:追過第2名,取代他的名次,所以你是第2名

- (C) 22. 有一個環形跑道,阿文、阿火從休息亭起跑,阿文跑一圈需要 45 秒, 阿火反方向跑,每20秒會和阿文相遇一次,請問阿火跑一圈需要幾
- (A) 25
- (B) 30
- (C) 36
- (D) 40

解析:

45-20=25

x: 20=20: 25, x=16

...20+16=36

- (B)23. 某校由200位學生投票選拔三位模範生(一人一票,有可能無效票), 已知有 6 位侯選人,選舉結果每人票數都不同,且每人至少有一票。 結果周吉倫當選且票數是第3高,那麼他最多可能有幾票?
 - (A) 62
- (B) 63
- (C) 64
- (D) 65

解析:令周吉倫得 x 票

→
$$x+2+x+1+x+3+2+1 \le 200$$
→ $x \le 63\frac{2}{3}$, x 最大=63

對周最有利

名次	1	2	3	4	5	6
淵	<i>x</i> +2	<i>x</i> +1	x	3	2	1

- (A) 24. 在一慈善捐款活動中有 a_1 個人至少捐 1 萬元, 有 a_2 個人至少捐 2 萬元, 有 a_3 個人至少捐 3 萬元 … … ,有 a_n 個人至少捐 n 萬元 ,沒人捐超過 n萬元,總共收到捐款多少萬元?

 - (A) $a_1 + a_2 + a_3 + \dots + a_n$ (B) $a_1 + 2a_2 + 3a_3 + \dots + na_n$

 - (C) $a_1 \times a_2 \times a_3 \times \cdots \times a_n$ (D) $(1+2+3+\cdots+n) \times a_n$

解析: $1 \times (a_1 - a_2) + 2 \times (a_2 - a_3) + 3(a_3 - a_4) + 4(a_4 - a_5) + \cdots + n(a_{n-1} - a_n)$ $=a_1-a_2+2a_2-2a_3+3a_3-3a_4+4a_4-4a_5+\cdots+na_{n-1}-na_n$ $=a_1+a_2+a_3+a_4+\cdots\cdots+a_n$

(B)25. A、B、C、D四人作〇×是非題,他們的答案如下表所示。 A 與 B 得 70 分, C 得 60 分, 求 D 之得分。(答對一題得 10 分)

	第 1 問	第 2 問	第 3 問	第 4 問	第 5 問	第 6 問	第 7 問	第 8 問	第 9 問	第 10 問	分數
Α	\bigcirc	X	\circ	X	\bigcirc	\circ	X	X	X	\circ	70
В	\bigcirc	\bigcirc	X	X	X	\circ	\circ	\circ	X	X	70
С	X	X	X	\bigcirc	\bigcirc	X	\bigcirc	X	\bigcirc	X	60
D	\circ	X	X	\bigcirc	\bigcirc	X	X	\bigcirc	X	X	?

(A) 50 (B) 60 分 (C) 70 分 (D) 80 分

解析: A 與 B 每人答對 7 題, 2 人合計答對 14 題。但兩人的答案只有 4 題相同,其 餘的6題不同。後者(答案不同)的6題中必然有6個正解,因此前者(答 案相同)的4題中有8個正解,即全部為正解。

這四題及其正解為第1題 (\bigcirc) ,第4題 (\times) ,第6題 (\bigcirc) ,第9題 (\times) 。 在 C 的答案中上述四題皆答錯了,由其得分為 60 可知其他六題他全答對了。 根據上述資料, D 答對的是第 1、2、3、5、9、10 題, 故得分為 60。

	第 1 問	第 2 問	第 3 問	第 4 問	第 5 問	第 6 問	第 7 問	第 8 問	第 9 問	第 10 問	分數	
Α	\bigcirc	X		X	\circ	\bigcirc	X	X	X	\bigcirc	70	
В	\bigcirc	\bigcirc	X	X	X	\bigcirc		\bigcirc	X	X	70	
С	X	X	X			X		X		X	60	
D		X	X			X	X		X	X	?	→60分
正解	\circ	X	X	X	\bigcirc	\bigcirc	0	X	X	X		

二、計算題(每題25分)

1. 找規則律。

【例】:

1		4	2		5	4		7
	2			19			?	
2		3	3		4	5		6

【解】:1×2×3-4=2,2×3×4-5=19,4×5×6-7=113······答

(1) 找出下列?是多少。

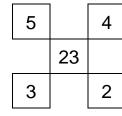
(提供 1 種解法得 10 分,提供 2 種不同解法得 15 分)

7		2
	6	
2		4

5		10
	20	
8		2

9		2
	?•	
4		10

(2) 仿上自己創造題目並解答。


 $(至少2種+ \cdot - \cdot \times \cdot \div$ 運算且答案是正整數,10分)

解析: (1) 參考解答 7×2-4×2=6,5×8-2×10=20,9×4-10×2=16

$$(5-1)\times 8-10-2=20$$

$$(9-1)\times 4-2-10=20$$

(2)

7		5
	43	
4		3

 $5\times3+4\times2=23$, $7\times4+5\times3=43$, $10\times2+7\times3=41$

- 設 $\triangle ABC$ 的三高分別為 $\overline{AD} = 6 \cdot \overline{BE} = 4 \cdot \overline{CF} = 3$
 - (1) 試證: $\triangle ABC$ 為鈍角三角形。(15分)
 - (2) 試求△ABC的面積。(10分)

解析: (1) 令
$$\overline{BC} = a \cdot \overline{CA} = b \cdot \overline{AB} = c$$

$$\therefore \overline{AD} = 6$$
, $\overline{BE} = 4$, $\overline{CF} = 3$

$$\therefore a:b:c=\frac{1}{6}:\frac{1}{4}:\frac{1}{3}=2:3:4$$

$$B$$
 E
 D
 C

$$\widehat{r}a = 2t \cdot b = 3t \cdot c = 4t$$

$$\Rightarrow \cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{2^2 + 3^2 - 4^2}{2 \cdot 2 \cdot 3} = -\frac{1}{4}$$

$$\therefore \angle C > 90^{\circ}$$
 $\therefore \triangle ABC$ 為鈍角三角形

(2) 由海龍公式知 $\triangle ABC$ 之面積為 $\sqrt{\frac{9}{2}t \cdot \frac{5}{2}t \cdot \frac{3}{2}t \cdot \frac{1}{2}t} = \frac{3\sqrt{15}}{4}t^2$

$$\nabla \overline{BC} = 2t$$
, $\overline{AD} = 6$

$$\therefore \triangle ABC$$
之面積 = $\frac{1}{2} \cdot 2t \cdot 6 = 6t$

$$\therefore \frac{3\sqrt{15}}{4}t^2 = 6t \qquad \therefore t = \frac{8}{\sqrt{15}}$$

$$\therefore \triangle ABC$$
之面積 $6t = \frac{48}{\sqrt{15}} = \frac{16\sqrt{15}}{5}$