高中二年級 決審試題

- ◎ 第1-16題請將答案填寫在下面答案表內!
- ◎ 第17-18題需在試題空白處寫出計算過程,否則不予計分!

選擇題	1	2	3	4	5	6	7	8
答案								
填空題	9	10	11	12	13	14	15	16
答案			5					

- 一、選擇題(每小題5分,共40分)
- 1. 已知函數 $f(x) = \frac{a-x}{x-a-1}$,其反函數 $f^{-1}(x)$ 的圖像的對稱中心為點M(m,3),則 a^m 為

() \circ A. 2 B. -2 C. $\frac{1}{2}$ D. $-\frac{1}{2}$

2. Let real numbers $m \cdot n \cdot x$ and y satisfy $m^2 + n^2 = a \cdot x^2 + y^2 = b$, where a, b are constants (\mathbb{E} 常數) and $a \neq b$, Determine the minimum value of mx+ny.

A. $-\frac{a+b}{2}$ B. $-\sqrt{ab}$ C. $-\frac{2ab}{a+b}$ D. $-\frac{\sqrt{a^2+b^2}}{2}$

3. $\{F_n\}$ 表示常見的 Fibonacci 數列: $F_0=0$ 、 $F_1=1$ 、 $F_2=1$ 、 $F_{n+2}=F_{n+1}+F_n$ (n 為任意自然數), 設 $G_n = \sum_{i=1}^n F_{2i}$, $H_n = \sum_{i=1}^n F_{2i-1}$,那麼 $G_{2015} - H_{2015}$ 的值為()。 A. F_{2015} B. F_{4029} C. H_{2014} D. G_{2014}

4. 在平面 α 中, $\triangle ABC$ 與 $\triangle A'B'C'$ 關於直線 m 對稱(且兩三角形分居直線 m 的兩側), 現將 α 沿直線m折成直二面角,則由 $A \times B \times C \times A' \times B' \times C'$ 六個點所能確定的平面個 數為()。

A. 11 B. 14

C. 17 D. 20

5. 已知 $x_1=16$, $x_2=14$, $x_{n+2}=\frac{x_{n+1}^2-4}{x}$ ($\forall n \geq 1$), 則數列 $\{x_n\}$ 的性質是 (

- A. 只有有限項,且對數列中連續三項,總有 $x_{n+2}=2x_{n+1}-x_n$
- B. 有無窮多項,且對數列中連續三項,總有 $x_{n+2}=2x_{n+1}-x_n$
- C. 只有有限項,且存在數列中連續三項,使 $x_{n+2}\neq 2x_{n+1}-x_n$
- D. 有無窮多項,且存在數列中連續三項,使 $x_{n+2}\neq 2x_{n+1}-x_n$

6. 在平面直角坐標行中,若方程 $m(x^2+y^2+2y+1)=(x-2y+3)^2$ 表示的曲線為橢圓,則 實係數 *m* 的取值範圍是 ()。 A. (0,1) B. (1,+∞) C. (0,5) D. (5,+∞)

7. 集合 $A = \{1, 2, \dots, 2015\}$,則定義在 A 上的單調遞增函數 $f: A \to A$ (即 $\forall x, y \in A$, $x \le y$, 有f(x)≤f(y)) 共有() 個。

- A. C_{4030}^{2015} B. C_{4029}^{2015} C. C_{4028}^{2015} D. C_{4028}^{2014}

8. 已知抛物 $\frac{1}{8}$ 以 與其關於點(1,1)對稱的曲線恰有兩個不同的交點,且這兩個交點 所在直線與x軸夾角為 45° ,那麼實數a=_____

- A. $-\frac{1}{2}$ B. $\frac{1}{2}$ C. -2 D. 2

二、填空題(每小題 5 分,共 40 分)

9. In the sequence $\{a_n\}$, $a_1 = 2$ and $a_{n+1} = 1 - \frac{1}{a}$ for all positive integers (正整數)($\forall n \ge 1$),

10. 二次曲線: $3x^2 - 8xy + 7y^2 + 4x - 2y - 109 = 0$ 上的整點(x,y)共有_______個。

11. 已知 $0 < x < \frac{\pi}{2}$,兩個對數 $\log_{\sin x} \cos x$ 與 $\log_{\cos x} \sqrt{\tan x}$ 均不為 0 ,且和為 1 ,則 $\sin x =$

12. It is known $f(x) = \log_{\frac{1}{2}}(3^x + 1) + 5abx$ is an even function (偶函數) while $g(x) = 2^x + \frac{a+b}{2^x}$ is an odd function (奇函數). Find the value of $a^3 + b^3$. _____.

- 13. $\triangle ABC$ 的三邊邊長 AB=n+3x,BC=n+2x,CA=n+x 且 BC 邊上的高 AD=n,其中 n 為 正整數且 $0 < x \le 1$,則滿足上述條件的 $\triangle ABC$ 共有_______個(互不全等意義下)。
- 14. 三棱臺 $ABC A_1B_1C_1$ 的任意兩個側面所成的二面角都是直二面角,高為 $\frac{3\sqrt{34}}{17}$ cm,且下底面 $\triangle ABC$ 中,AB=AC=5 cm, $BC=4\sqrt{2}$ cm,則棱臺體積為_____cm³。
- 15. 設 y=f(x)是定義在實數域上的實函數,且滿足 $f(a\cdot f(b))=ab$ ($\forall a,b \in R$),那麼 f(2015)=______(求出所有可能取值)。
- 16. 已知三次函數 $y=x^3+ax^2+by+c$ 的圖像與 x 軸(從左至右)順次交於三個點 $A \cdot B \cdot C$, $AP \cdot CQ$ 是函數圖像的切線(P 與 A 不同,Q 與 C 不同, $P \cdot Q$ 為切點),則|AC|與 線段 PQ 在 x 軸上的投影長度之比為_____。
- 三、簡答題(每小題10分,共20分,請簡要寫出解答過程)
- 17. 求證:存在唯一的無窮項正數數列 $\{a_n\}$,n∈ N^* 滿足:
 - $(1) a_1 = 2\sqrt{3}$;
 - (2) $\forall n \geq 2$, $a_{n-1} = \frac{8a_n}{4 a_n^2}$,且這個數列 $\{a_n\}$ 是單調遞減的;求 $\lim_{n \to +\infty} a_n$

18. 求證: $\sum_{k=0}^{1000} {1000 \choose k} {2015+k \choose 2015} (-1)^k = {2015 \choose 1015}$; 其中 ${n \choose m} = C_n^m$

