2022 第十八屆 【 國際數學競賽複賽(台灣)

2022 Eighteenth International Mathematics Contest (Taiwan)

或 年 級 試 卷

考試時間:90 分鐘 卷面總分:100 分《考試時間尚未開始請勿翻閱》

- ◎參賽學生請將試題答案填寫在答案表內,填寫後不得塗改;塗改後的答案不計算成績!
- ◎計算題需要在試題空白處列出運算過程;只寫答案沒有運算過程不計算成績!

選擇題	1	2	3	4	5	6	7	8
答案	D	D	В	D	C	C	A	В
填充題	1	2	3	4	5	6	7	8
答案	50	30	25	513	26	16	$\frac{20}{9}$	2023、1

- 一、選擇題(每題5分,共40分)
- 1. 若 a、b 為相異整數,且 $a^2+2ab+b^2+a+b=0$,則數對(a, b)不可能為下列何者? (A) (7, -7) (B) (9, -10) (C) (-3, 3) (D) (13, -12)

<解析>

$$a^2 + 2ab + b^2 + a + b = 0$$

$$(a+b)^2 + (a+b) = 0$$

$$(a+b)(a+b+1) = 0$$

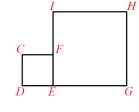
$$a + b = 0$$
 $a + b + 1 = 0$

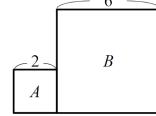
當(13,-12)代入,13-12+1≠0,選D。

2. Two squares A and B are side by side and share a vertex. Which of the following cannot be the length of the line segment connected by any two points of the seven vertices? $(A)\sqrt{20}$ $(B)\sqrt{40}$ $(C)\sqrt{52}$ $(D)\sqrt{70}$

翻譯:兩個正方形 A 和 B 並排並共用一個頂點。下列哪一項不能是七個頂點中任意兩點連接的線段的長度?

<解析>


$$\overline{DF} = \sqrt{2^2 + 2^2} = \sqrt{8}$$
; $\overline{DH} = \sqrt{8^2 + 6^2} = \sqrt{100}$


$$\overline{EH} = \sqrt{6^2 + 6^2} = \sqrt{72}$$
; $\overline{CG} = \sqrt{2^2 + 8^2} = \sqrt{68}$

$$\overline{CI} = \sqrt{4^2 + 2^2} = \sqrt{20}$$
; $\overline{CH} = \sqrt{4^2 + 8^2} = \sqrt{80}$

$$\overline{FH} = \sqrt{4^2 + 6^2} = \sqrt{52}$$
; $\overline{DI} = \sqrt{2^2 + 6^2} = \sqrt{40}$

∴不可能出現 $\sqrt{70}$,選D。

3. 已知a-b=5, $\sqrt{16+a}+\sqrt{b}=7$,求 $\sqrt{16+a}-\sqrt{b}$ 之值為多少? (A)2 (B)3 (C)5 (D)7 <解析>

 $(\sqrt{16+a} + \sqrt{b})(\sqrt{16+a} - \sqrt{b}) = 16+a-b$

$$7 \times (\sqrt{16+a} - \sqrt{b}) = 16 + 5 = 21$$

∴
$$(\sqrt{16+a}-\sqrt{b})=21\div7=3$$
, \mathcal{E} B ∘

4. <u>頂尖</u>航空公司規定乘客行李超過一定重量後,每公斤收取固定費用,即行李託運費與 重量成線型函數關係:

行李重量(公斤)	 28	29	30	
託運費(元)	 90	120	150	

上表是行李重量與託運費部分資料,請問行李 36 公斤的託運費是多少元? (A)240 (B)270 (C)300 (D)330

<解析>

令行李重量x公斤,託運費y元,則y=ax+b

$$\begin{cases} 150 = 30a + b \\ 120 = 29a + b \end{cases} \rightarrow a = 30 , b = -750$$

∴
$$y = 30x - 750$$
, $\stackrel{\text{\tiny \'eff}}{=} x = 36$, $y = 36 \times 30 - 750 = 1080 - 750 = 330$, $\stackrel{\text{\tiny \'eff}}{=} D$ ∘

5. If a positive integer *a* is divided by seven natural numbers 2, 3, ..., 8, and the remainders are all 1, then the minimum value of *a* is _____. (A)839 (B)840 (C)841 (D)842

<翻譯>若一個正整數a被2、3、.....、8 這七個自然數除,所得的餘數都為1,則a的最小值是。。

<解析>

[2, 3, 4, 5, 6, 7, 8]=840 a最小值=840+1=841,選C。

6. 仁簡 $\sqrt{3-2\sqrt{2}} + \sqrt{6-4\sqrt{2}} = ?$ (A) $2\sqrt{2} + 1$ (B) $2\sqrt{2} - 3$ (C) 1 (D) $3-2\sqrt{2}$

<解析>

$$\sqrt{3-2\sqrt{2}} + \sqrt{6-4\sqrt{2}} = \sqrt{(\sqrt{2}-1)^2} + \sqrt{(2-\sqrt{2})^2} = \left|\sqrt{2}-1\right| + \left|2-\sqrt{2}\right| = \sqrt{2}-1+2-\sqrt{2}=1$$
, $\cancel{\mathbb{E}}$ C \circ

7. 若關於x的不等式組 $\begin{cases} 3-2x \le 2 \\ x-m < 0 \end{cases}$ 的所有整數解的和是 10,則 m 的範圍是_____。

(A)
$$4 < m \le 5$$
 (B) $1 < m < 5$ (C) $1 \le m \le 5$ (D) $\frac{1}{2} \le m < 5$

<解析>

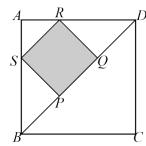
$$3 - 2x \le 2 \longrightarrow 2x \ge 1 \quad , \quad x \ge \frac{1}{2}$$

$$x - m < 0 \longrightarrow x < m$$

$$\therefore m > x \ge \frac{1}{2}$$
 且整數解的和是 10

 $x=1 \cdot 2 \cdot 3 \cdot 4$,故 m 的範圍是 $4 < m \le 5$

8. 現有兩箱小球,若從第一箱取出 50 顆放進第二箱,則第二箱比第一箱多 1 倍,若從 第二箱中取出一些放進第一箱,則第一箱比第二箱多 2 倍,則在第一箱的小球數最少 的情況下,第二箱小球的個數是 顆。(A)37 (B)38 (C)39 (D)40


<解析>

假設移動後的數量,第一箱為 x 顆,則第二箱為 2x 顆故原來的數量,第一箱為 x+50 顆,第二箱為 2x-50 顆取一些數量 y 顆放入,第一箱為 x+50+y 顆,第二箱為 2x-50-y 顆則關係式: $x+50+y=(2x-50-y)\times 3$ $\therefore x+50+y=6x-150-3y$,5x-4y=200,5x=200+4y 且第一箱數量最少當 y=5,x=44 **》**第一箱 44+50=94,第二箱 88-50=38,選 B。

- 二、填充題(每題5分,共40分)
- 1. 如右圖,ABCD 為正方形, \overline{BC} = 15公分,PQRS 也是正方形, \overline{PQ} 在 \overline{BD} 上,R 、S 兩點分別在 \overline{AD} 、 \overline{AB} 上,則正方形 PQRS 的面積是_____ 平方公分。

<解析>

$$\Rightarrow \overline{PQ} = x$$
 , $\overline{BD} = 3x$
且 $\overline{BD} = \sqrt{15^2 + 15^2} = \sqrt{450} = 15\sqrt{2}$
 $\therefore 3x = 15\sqrt{2}$, $x = 5\sqrt{2}$
正 万形 面積= $x^2 = (5\sqrt{2})^2 = 50$ 平方公分

<解析>

$$\Rightarrow a = 42\frac{2}{3}$$
, $b = 38\frac{2}{3}$

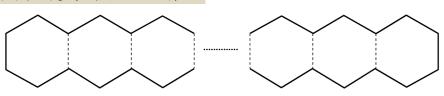
$$a^2 - 2ab + b^2 + 5a - 5b - 6 = (a - b)^2 + 5(a - b) - 6 = (a - b + 6)(a - b - 1)$$

$$\therefore (a-b+6)(a-b-1) = (42\frac{2}{3}-38\frac{2}{3}+6)(42\frac{2}{3}-38\frac{2}{3}-1) = 10 \times 3 = 30$$

3. The picture of side-by-side rectangles on the right is composed of a regular hexagon with a side length of 1 cm. If the periphery of this figure represents the perimeter of the solid line part is 102 cm. How many regular hexagons are there in this figure? ______.

翻譯: 右邊的並排長方形圖片由邊長為 1 公分的正六邊形組成。 如果這個圖的周長表示實線部分的周長是 102 公分。這個圖中有多少個正六邊形?

<解析>


第一個周長 a_1 =6

第二個周長 a2=6+4

第三個周長a3=6+4×2

∴第 n 個周長 a_n =6+4×(n-1)

6+4×(n-1)=102, 4n-4=96, n=25 個

右圖每一個正方形內均有9個數,且相鄰的兩個正方形的數字有一定的規律性,請問 由左而右的第41個正方形內9個數字之和是。

<解析>

第41個正方形

41	45	49
53	57	61
65	69	73

- ∴數字和=(41+73)×9÷2=513 或 57×9=513。
- Known n numbers $x_1, x_2, x_3, \dots, x_n$, each of them can only take one of the three numbers 0, -1, 2, and satisfy $\begin{cases} x_1 + x_2 + \dots + x_n = 2 \\ x_1^2 + x_2^2 + \dots + x_n^2 = 22 \end{cases}$, then the value of $x_1^3 + x_2^3 + \dots + x_n^3$ is _____

<翻譯>已知 n 個數 x_1 、 x_2 、 x_3 、 、 x_n ,它們每一個數只能取 0, -1, 2 這三個數中的一個,且滿足 $\begin{cases} x_1 + x_2 + \dots + x_n = 2 \\ x_1^2 + x_2^2 + \dots + x_n^2 = 22 \end{cases}$,則 $x_1^3 + x_2^3 + \dots + x_n^3$ 的值為______。

<解析>

設
$$x_1$$
、 x_2 、 x_3 、....、 x_n 中有 a 個-1 和 b 個 2
則可將兩式:
$$\begin{cases} -a+2b=2\\ a+4b=22 \end{cases}$$

$$a = 6$$
, $b = 4$

$$\therefore x_1^3 + x_2^3 + \dots + x_n^3 = a(-1)^3 + b \times 2^3 = -6 + 4 \times 8 = 26$$

梓華、玉芬、奕凱三人在甲、乙兩塊地種樹,甲地要種植 1000 棵,乙地要種植 1250 棵,已知梓華、玉芬、奕凱每天分別能植樹 20、25、30 棵樹,梓華在甲地植樹,奕 凱在乙地植樹,玉芬先在甲地植樹,然後轉到乙地植樹,兩地同時開始且同時結束, 玉芬在甲地植樹 天。

<解析>

假設玉芬用 x 天在甲地,用 y 天在乙地

$$20(x+y)+25x=1000....$$

$$30(x+y)+25y=1250.....$$

$$1+2 \rightarrow 50(x+y)+25(x+y)=2250$$

75(x+y)=2250, x+y=30

 $20 \times 30 + 25 \times 1000$

 $25x=400 \cdot x=16$

玉芬應該在開始後第16天從甲地轉到乙地。

7. 已知
$$a+b=2$$
, $ab=\frac{2}{3}$,求代數式 $a^2b+2a^2b^2+ab^2$ 的值=_____。

<解析>

$$a^{2}b + 2a^{2}b^{2} + ab^{2} = ab(a + 2ab + b) = \frac{2}{3} \times (2 + \frac{2}{3} \times 2) = \frac{20}{9}$$

8.
$$\exists \exists 1 \ a^2 + a^4 - 2 = 0$$
, $\exists 1 + a + a^2 + a^3 + \dots + a^{2022} = \underline{ }$.

<解析>

$$a^2 + a^4 - 2 = 0 \rightarrow a^4 + a^2 - 2 = 0$$
, $(a^2 + 2)(a^2 - 1) = 0$

$$a^2 - 1 = 0$$
, $a = \pm 1$

當
$$a=1$$
, $1+1+1+....+1=2023$ 或 當 $a=-1$, $1-1+1-....+1=1$

三、計算題(10分/10分,共20分)※未寫計算過程不予計分

1. 將若干個蘋果給一群小朋友,若每個人分 1 個,則剩下 24 個蘋果;若每人所得的蘋果數為人數的 $\frac{1}{2}$,則蘋果剛好分完,那麼每人分 3 個,蘋果會剩下幾個?

<解析>

假設小朋友有x人,則蘋果有 $x \times 1 + 24$ 或 $\frac{1}{2}x \cdot x$ 個

$$\frac{1}{2}x^2 = x + 24 \longrightarrow x^2 = 2x + 48 \quad x^2 - 2x - 48 = 0$$

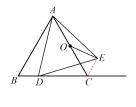
$$(x-8)(x+6)=0$$

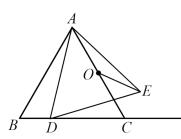
$$\therefore x = 8 \stackrel{\rightleftharpoons}{\cancel{\boxtimes}} x = -6 \stackrel{\frown}{(} \stackrel{\frown}{\land} \stackrel{\frown}{\ominus} \stackrel{\frown}{)}$$

蘋果=
$$8\times1+24=32$$
 , $32-8\times3=8$ 個。

2. 如圖,等邊三角形 ABC 的邊長為 2,點 O 為 \overline{AC} 中點,點 D 在射線上運動,以 \overline{AD} 為 邊向右做等邊三角形 ADE,連接 \overline{OE} ,求線段 \overline{OE} 的最小值?

<解析>


 $:: \triangle ABC$ 為等邊三角形,點 O 為 \overline{AC} 中點


$$\therefore \overline{OC} = \frac{1}{2} \overline{AC}$$
, $\angle ABD = 60^{\circ}$

 \triangle ABC 和 \triangle ADE 均為等邊三角形,連接 \overline{CE}

在△ABD 和△ACE 中

$$(1)\overline{AB} = \overline{AC}$$
 $(2)\overline{AD} = \overline{AE}$ $(3)\angle BAD = \angle CAE$

- ∴ ΔABD≅ ΔACE (SAS 全等)
- \therefore E 在與 \overline{AC} 成60°的射線上
- 當 $\overline{OE} \perp \overline{CE}$, \overline{OE} 的長度最小
- \therefore $\angle OEC = 90^{\circ}$, $\angle COE = 30^{\circ}$
- $\therefore \overline{OE}$ 的最小值= $\frac{\sqrt{3}}{2}\overline{OC} = \frac{\sqrt{3}}{2}$ 。